proteus.SubsurfaceTransportCoefficients module

TransportCoefficients for flow and transport in porous media

Inheritance diagram of proteus.SubsurfaceTransportCoefficients

class proteus.SubsurfaceTransportCoefficients.BlockHeterogeneousCoefficients(mesh)[source]

Basic data structures and functionality for keeping track of a block heterogeneity

initializeMaterialTypes()[source]

returns material type identifiers for mesh topology in tuple element,exterior_element_boundaries,element_boundaries

note element_boundaries is nElementBoundaries_global x 2 and gives the element material property to the left and right of a global element boundary

class proteus.SubsurfaceTransportCoefficients.SinglePhaseDarcyCoefficients(K_types, source_types, S_s_types=None, nc=1, nd=2, timeVaryingCoefficients=False, materialValuesLocallyConstant=False)[source]

Bases: proteus.TransportCoefficients.TC_base

\(S_s h_t -\deld ( K_i(x,t) \grad h_i ) + r(x,t) = 0 i=1,nc\)

initializeMesh(mesh)[source]
initializeElementQuadrature(t, cq)[source]
initializeElementBoundaryQuadrature(t, cebq, cebq_global)[source]
initializeGlobalExteriorElementBoundaryQuadrature(t, cebqe)[source]
evaluateHeterogeneity_element(t, cq)[source]
evaluateHeterogeneity_elementBoundary(t, cebq)[source]
evaluateHeterogeneity_globalElementBoundary(t, cebq_global)[source]
evaluateHeterogeneity_exteriorElementBoundary(t, cebqe)[source]
evaluate(t, c)[source]
class proteus.SubsurfaceTransportCoefficients.ConservativeHeadRichardsMualemVanGenuchten(nd, Ksw_types, vgm_n_types, vgm_alpha_types, thetaR_types, thetaSR_types, gravity, density, beta, diagonal_conductivity=True, getSeepageFace=None, pc_eps=1e-08)[source]

Bases: proteus.TransportCoefficients.TC_base

version of Re where element material type id’s used in evals

initializeMesh(mesh)[source]
initializeElementQuadrature(t, cq)[source]
initializeElementBoundaryQuadrature(t, cebq, cebq_global)[source]
initializeGlobalExteriorElementBoundaryQuadrature(t, cebqe)[source]
evaluate(t, c)[source]
conservativeHeadRichardsMualemVanGenuchtenHetEvaluateV2()[source]

evaluate the coefficients of Richards’ equation

conservativeHeadRichardsMualemVanGenuchten_sd_het()[source]

evaluate the coefficients of Richards’ equation for block heterogeneity with sparse diffusion rep for hydraulic conductivity

class proteus.SubsurfaceTransportCoefficients.RE_NCP1_OneLevelTransport(uDict, phiDict, testSpaceDict, matType, dofBoundaryConditionsDict, dofBoundaryConditionsSetterDict, coefficients, elementQuadrature, elementBoundaryQuadrature, fluxBoundaryConditionsDict=None, advectiveFluxBoundaryConditionsSetterDict=None, diffusiveFluxBoundaryConditionsSetterDictDict=None, stressFluxBoundaryConditionsSetterDict=None, stabilization=None, shockCapturing=None, conservativeFluxDict=None, numericalFluxType=None, TimeIntegrationClass=None, massLumping=False, reactionLumping=False, options=None, name='defaultName', reuse_trial_and_test_quadrature=False, sd=True, movingDomain=False)[source]

Bases: proteus.Transport.OneLevelTransport

OneLevelTransport designed specifically for Non-Conforming \(P^1\) approximation to RE Approximation uses nodal quadrature and upwinding

calculateElementCoefficients()[source]

calculate the nonlinear coefficients at the quadrature points and nodes include interpolation points explicitly here now

calculateElementResidual()[source]

Calculate all the element residuals

calculateElementJacobian()[source]
class proteus.SubsurfaceTransportCoefficients.TwophaseDarcyFlow_base(nd=1, dimensionless_gravity=[-1.0], density_w=998.2, density_n=1.205, viscosity_w=0.00089, viscosity_n=1.81e-05, density_w_parameters={'psi_0': 0.0, 'model': 'Exponential', 'beta': 0.0, 'nParameters': 3, 'rho_0': 998.2}, density_n_parameters={'psi_0': 0.0, 'model': 'Exponential', 'beta': 0.0, 'nParameters': 3, 'rho_0': 1.205}, psk_model='VGM', nMaterialTypes=1, diagonal_conductivity=True, nPSKsplineKnots=None)[source]

Bases: proteus.TransportCoefficients.TC_base

default_density_w_parameters = {'psi_0': 0.0, 'model': 'Exponential', 'beta': 0.0, 'nParameters': 3, 'rho_0': 998.2}[source]
default_density_n_parameters = {'psi_0': 0.0, 'model': 'Exponential', 'beta': 0.0, 'nParameters': 3, 'rho_0': 1.205}[source]
initializeMesh(mesh)[source]
initializeElementQuadrature(t, cq)[source]
initializeElementBoundaryQuadrature(t, cebq, cebq_global)[source]
initializeGlobalExteriorElementBoundaryQuadrature(t, cebqe)[source]
initializeGeneralizedInterpolationPointQuadrature(t, cip)[source]
setMaterialTypes(Ksw_types=[1.0], omega_types=[0.4], Sw_max_types=[1.0], Sw_min_types=[0.0], bc_lambda_types=None, bc_pd_types=None, vg_alpha_types=None, vg_m_types=None, psk_spline_types=None)[source]
generateSplineTables()[source]

generate spline table look up arrays

twophaseDarcy_vol_frac()[source]

compute phase volume fractions from point-vals for sw and zoned material types for porosity (omega)

class proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_fc(nd=1, dimensionless_gravity=[-1.0], density_w=998.2, density_n=1.205, viscosity_w=0.00089, viscosity_n=1.81e-05, density_w_parameters={'psi_0': 0.0, 'model': 'Exponential', 'beta': 0.0, 'nParameters': 3, 'rho_0': 998.2}, density_n_parameters={'psi_0': 0.0, 'model': 'Exponential', 'beta': 0.0, 'nParameters': 3, 'rho_0': 1.205}, psk_model='VGM', nMaterialTypes=1, diagonal_conductivity=True, spatialCompressibilityFlag=0, nPSKsplineKnots=None)[source]

Bases: proteus.SubsurfaceTransportCoefficients.TwophaseDarcyFlow_base

continuity equation for each phase

\[\pd{m_w}{t} - \deld ( en{a}_w \grad \phi_w) + r_w = 0 \pd{m_n}{t} - \deld ( en{a}_n \grad \phi_n) + r_n = 0\]
evaluate(t, c)[source]
twophaseDarcy_fc_sd_het_matType()[source]

Evaluate the coefficients of the fully coupled formulation of (slightly) compressible, two-phase Darcy flow for a heterogeneous medium, sparse diffusion rep. for het

class proteus.SubsurfaceTransportCoefficients.FullyCoupledMualemVanGenuchten(nd, Ksw_types, vgm_n_types, vgm_alpha_types, thetaR_types, thetaSR_types, dimensionless_gravity, density_w, density_n, viscosity_w, viscosity_n, density_w_params, density_n_params, diagonal_conductivity=True, vgm_small_eps=1e-16, vgm_ns_del=1e-08, use_spline=False, nPSKsplineKnots=None)[source]

Bases: proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_fc

Formulation using phase continuity equations and Van-Genuchten Mualem psk relations

Basically a convenience wrapper for fully coupled approximation with volume-fraction based inputs as in Richards’ equation formulations

class proteus.SubsurfaceTransportCoefficients.FullyCoupledSimplePSKs(nd, Ksw_types, thetaR_types, thetaSR_types, dimensionless_gravity, density_w, density_n, viscosity_w, viscosity_n, density_w_params, density_n_params, diagonal_conductivity=True)[source]

Bases: proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_fc

Formulation using phase continuity equations and ‘simp’ quadratic rel-perm, linear capillary pressure psk relations

class proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_fc_pp(nd=1, dimensionless_gravity=[-1.0], density_w=998.2, density_n=1.205, viscosity_w=0.00089, viscosity_n=1.81e-05, density_w_parameters={'psi_0': 0.0, 'model': 'Exponential', 'beta': 0.0, 'nParameters': 3, 'rho_0': 998.2}, density_n_parameters={'psi_0': 0.0, 'model': 'Exponential', 'beta': 0.0, 'nParameters': 3, 'rho_0': 1.205}, psk_model='VGM', nMaterialTypes=1, diagonal_conductivity=True, nPSKsplineKnots=None)[source]

Bases: proteus.SubsurfaceTransportCoefficients.TwophaseDarcyFlow_base

continuity equation for each phase

\[\pd{m_w}{t} - \deld ( en{a}_w \grad \phi_w) + r_w = 0 \pd{m_n}{t} - \deld ( en{a}_n \grad \phi_n) + r_n = 0\]
initializeElementQuadrature(t, cq)[source]
initializeElementBoundaryQuadrature(t, cebq, cebq_global)[source]
initializeGlobalExteriorElementBoundaryQuadrature(t, cebqe)[source]
initializeGeneralizedInterpolationPointQuadrature(t, cip)[source]
evaluate(t, c)[source]
twophaseDarcy_fc_pp_sd_het_matType()[source]

Evaluate the coefficients of the fully coupled formulation of (slightly) compressible, two-phase Darcy flow for a heterogeneous medium, pressure-pressure sparse diffusion rep. for het

class proteus.SubsurfaceTransportCoefficients.FullyCoupledPressurePressureMualemVanGenuchten(nd, Ksw_types, vgm_n_types, vgm_alpha_types, thetaR_types, thetaSR_types, dimensionless_gravity, density_w, density_n, viscosity_w, viscosity_n, density_w_params, density_n_params, diagonal_conductivity=True, vgm_small_eps=1e-16, vgm_ns_del=1e-08, use_spline=False, nPSKsplineKnots=None)[source]

Bases: proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_fc_pp

Formulation using phase continuity equations, pressure-pressure formulation and Van-Genuchten Mualem psk relations

Basically a convenience wrapper for fully coupled approximation with volume-fraction based inputs as in Richards’ equation formulations

class proteus.SubsurfaceTransportCoefficients.FullyCoupledPressurePressureSimplePSKs(nd, Ksw_types, thetaR_types, thetaSR_types, dimensionless_gravity, density_w, density_n, viscosity_w, viscosity_n, density_w_params, density_n_params, diagonal_conductivity=True)[source]

Bases: proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_fc_pp

Formulation using phase continuity equations and ‘simp’ quadratic rel-perm, linear capillary pressure psk relations pressure-pressure formulation

class proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_split_pressure_base(nd=1, dimensionless_gravity=[-1.0], density_w=998.2, density_n=1.205, viscosity_w=0.00089, viscosity_n=1.81e-05, density_w_parameters={'psi_0': 0.0, 'model': 'Exponential', 'beta': 0.0, 'nParameters': 3, 'rho_0': 998.2}, density_n_parameters={'psi_0': 0.0, 'model': 'Exponential', 'beta': 0.0, 'nParameters': 3, 'rho_0': 1.205}, psk_model='VGM', nMaterialTypes=1, nSatModel=1, diagonal_conductivity=True, swConstant=1.0, capillaryDiffusionScaling=1.0)[source]

Bases: proteus.SubsurfaceTransportCoefficients.TwophaseDarcyFlow_base

Base class for ‘pressure’ or total flow conservation equation in fractional flow formulations. This

The primary functionality of the base class is to handle synchronization with a ‘saturation’ model to get the saturation, S_w, and capillary pressure (head), psi_c, variables

attachModels(modelList)[source]
initializeElementQuadrature(t, cq)[source]
initializeElementBoundaryQuadrature(t, cebq, cebq_global)[source]
initializeGlobalExteriorElementBoundaryQuadrature(t, cebqe)[source]
initializeGeneralizedInterpolationPointQuadrature(t, cip)[source]
class proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_split_saturation_base(nd=1, dimensionless_gravity=[-1.0], density_w=998.2, density_n=1.205, viscosity_w=0.00089, viscosity_n=1.81e-05, density_w_parameters={'psi_0': 0.0, 'model': 'Exponential', 'beta': 0.0, 'nParameters': 3, 'rho_0': 998.2}, density_n_parameters={'psi_0': 0.0, 'model': 'Exponential', 'beta': 0.0, 'nParameters': 3, 'rho_0': 1.205}, psk_model='VGM', nMaterialTypes=1, nPressModel=0, diagonal_conductivity=True, qScalarConstant=1.0, capillaryDiffusionScaling=1.0, advectionScaling=1.0)[source]

Bases: proteus.SubsurfaceTransportCoefficients.TwophaseDarcyFlow_base

Base class for aqueous phase mass conservation equation (saturation equation) in a fractional flow formulation.

The primary responsibility of the base class is to handle synchronization with the ‘pressure’ equation to get the total flow velocity variable, q_t, and aqueous phase pressure head, psi_w

attachModels(modelList)[source]
initializeElementQuadrature(t, cq)[source]
initializeElementBoundaryQuadrature(t, cebq, cebq_global)[source]
initializeGlobalExteriorElementBoundaryQuadrature(t, cebqe)[source]
initializeGeneralizedInterpolationPointQuadrature(t, cip)[source]
class proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_incompressible_split_pressure(nd=1, dimensionless_gravity=[-1.0], density_w=998.2, density_n=1.205, viscosity_w=0.00089, viscosity_n=1.81e-05, psk_model='VGM', nMaterialTypes=1, nSatModel=1, diagonal_conductivity=True, swConstant=1.0, capillaryDiffusionScaling=1.0)[source]

Bases: proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_split_pressure_base

Total flow conservation equation in an incompressible fractional flow formulation

evaluate(t, c)[source]
twophaseDarcy_incompressible_split_sd_pressure_het_matType()[source]

Evaluate the pressure coefficients of the split fractional flow formulation of incompressible, two-phase Darcy flow for a heterogeneous medium, sparse diffusion rep het

class proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_incompressible_split_saturation(nd=1, dimensionless_gravity=[-1.0], density_w=998.2, density_n=1.205, viscosity_w=0.00089, viscosity_n=1.81e-05, psk_model='VGM', nMaterialTypes=1, nPressModel=0, diagonal_conductivity=True, qScalarConstant=1.0, capillaryDiffusionScaling=1.0, advectionScaling=1.0)[source]

Bases: proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_split_saturation_base

Aqueous phase mass conservation equation (saturation equation) in an incompressible fractional flow formulation

evaluate(t, c)[source]
twophaseDarcy_incompressible_split_sd_saturation_het_matType()[source]

Evaluate the saturation coefficients of the split fractional flow formulation of incompressible, two-phase Darcy flow for a heterogeneous medium, sparse diffusion rep het

class proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_compressible_split_pressure(nd=1, dimensionless_gravity=[-1.0], density_w=998.2, density_n=1.205, viscosity_w=0.00089, viscosity_n=1.81e-05, density_w_parameters={'psi_0': 0.0, 'model': 'Exponential', 'beta': 0.0, 'nParameters': 3, 'rho_0': 998.2}, density_n_parameters={'psi_0': 0.0, 'model': 'Exponential', 'beta': 0.0, 'nParameters': 3, 'rho_0': 1.205}, psk_model='VGM', nMaterialTypes=1, nSatModel=1, compressibilityFlag=2, diagonal_conductivity=True, swConstant=1.0, capillaryDiffusionScaling=1.0)[source]

Bases: proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_split_pressure_base

Total flow conservation equation in a split compressible fractional flow formulation Right now, the options are

compressibility for the non-wetting phase (compressibleN) : compressiblityFlag=1

compressibility for both phases but with the slight compressiblity assumption (spatial density gradients are negligible) compressiblityFlag=2

evaluate(t, c)[source]
twophaseDarcy_compressibleN_split_sd_pressure_het_matType()[source]

Evaluate the pressure coefficients of the split fractional flow formulation of compressible non-wetting phase, two-phase Darcy flow for a heterogeneous medium, sparse diffusion rep het

twophaseDarcy_slightCompressible_split_sd_pressure_het_matType()[source]

Evaluate the pressure coefficients of the split fractional flow formulation of slight compressible, two-phase Darcy flow for a heterogeneous medium, sparse diffusion rep het

class proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_compressible_split_saturation(nd=1, dimensionless_gravity=[-1.0], density_w=998.2, density_n=1.205, viscosity_w=0.00089, viscosity_n=1.81e-05, density_w_parameters={'psi_0': 0.0, 'model': 'Exponential', 'beta': 0.0, 'nParameters': 3, 'rho_0': 998.2}, density_n_parameters={'psi_0': 0.0, 'model': 'Exponential', 'beta': 0.0, 'nParameters': 3, 'rho_0': 1.205}, psk_model='VGM', nMaterialTypes=1, nPressModel=0, compressibilityFlag=2, diagonal_conductivity=True, qScalarConstant=1.0, capillaryDiffusionScaling=1.0, advectionScaling=1.0)[source]

Bases: proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_split_saturation_base

Aqueous phase mass conservation equation (saturation equation) in a compressible fractional flow formulation

Right now, the options are

compressibility for the non-wetting phase (compressibleN) : compressiblityFlag=1

compressibility for both phases but with the slight compressiblity assumption (spatial density gradients are negligible) compressiblityFlag=2

evaluate(t, c)[source]
twophaseDarcy_compressibleN_split_sd_saturation_het_matType()[source]

Evaluate the saturation coefficients of the split fractional flow formulation of compressible non-wetting phase, two-phase Darcy flow for a heterogeneous medium, sparse diffusion rep het

twophaseDarcy_slightCompressible_split_sd_saturation_het_matType()[source]

Evaluate the saturation coefficients of the split fractional flow formulation of slight compressible, two-phase Darcy flow for a heterogeneous medium, sparse diffusion rep het

class proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_split_pp_pressure_base(nd=1, dimensionless_gravity=[-1.0], density_w=998.2, density_n=1.205, viscosity_w=0.00089, viscosity_n=1.81e-05, density_w_parameters={'psi_0': 0.0, 'model': 'Exponential', 'beta': 0.0, 'nParameters': 3, 'rho_0': 998.2}, density_n_parameters={'psi_0': 0.0, 'model': 'Exponential', 'beta': 0.0, 'nParameters': 3, 'rho_0': 1.205}, psk_model='VGM', nMaterialTypes=1, nSatModel=1, diagonal_conductivity=True, swConstant=1.0, capillaryDiffusionScaling=1.0)[source]

Bases: proteus.SubsurfaceTransportCoefficients.TwophaseDarcyFlow_base

Base class for ‘pressure’ or total flow conservation equation in fractional flow formulations. This

The primary functionality of the base class is to handle synchronization with a ‘saturation’ model to get the saturation, \(S_w\), and capillary pressure (head), \(\psi_c\), variables

This version would allow for capillary pressure to be unknown for saturation equation

attachModels(modelList)[source]
initializeElementQuadrature(t, cq)[source]
initializeElementBoundaryQuadrature(t, cebq, cebq_global)[source]
initializeGlobalExteriorElementBoundaryQuadrature(t, cebqe)[source]
initializeGeneralizedInterpolationPointQuadrature(t, cip)[source]
class proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_split_pp_saturation_base(nd=1, dimensionless_gravity=[-1.0], density_w=998.2, density_n=1.205, viscosity_w=0.00089, viscosity_n=1.81e-05, density_w_parameters={'psi_0': 0.0, 'model': 'Exponential', 'beta': 0.0, 'nParameters': 3, 'rho_0': 998.2}, density_n_parameters={'psi_0': 0.0, 'model': 'Exponential', 'beta': 0.0, 'nParameters': 3, 'rho_0': 1.205}, psk_model='VGM', nMaterialTypes=1, nPressModel=0, diagonal_conductivity=True, qScalarConstant=1.0, capillaryDiffusionScaling=1.0, advectionScaling=1.0)[source]

Bases: proteus.SubsurfaceTransportCoefficients.TwophaseDarcyFlow_base

Base class for aqueous phase mass conservation equation (saturation equation) in a fractional flow formulation.

The primary responsibility of the base class is to handle synchronization with the ‘pressure’ equation to get the total flow velocity variable, \(q_t\), and aqueous phase pressure head, \(psi_w\)

attachModels(modelList)[source]
initializeElementQuadrature(t, cq)[source]
initializeElementBoundaryQuadrature(t, cebq, cebq_global)[source]
initializeGlobalExteriorElementBoundaryQuadrature(t, cebqe)[source]
initializeGeneralizedInterpolationPointQuadrature(t, cip)[source]
class proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_incompressible_split_pp_pressure(nd=1, dimensionless_gravity=[-1.0], density_w=998.2, density_n=1.205, viscosity_w=0.00089, viscosity_n=1.81e-05, psk_model='VGM', nMaterialTypes=1, nSatModel=1, diagonal_conductivity=True, swConstant=1.0, capillaryDiffusionScaling=1.0)[source]

Bases: proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_split_pp_pressure_base

Total flow conservation equation in an incompressible fractional flow formulation

evaluate(t, c)[source]
twophaseDarcy_incompressible_split_sd_pressure_het_matType()[source]

Evaluate the pressure coefficients of the split fractional flow formulation of incompressible, two-phase Darcy flow for a heterogeneous medium, sparse diffusion rep het

class proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_incompressible_split_pp_saturation(nd=1, dimensionless_gravity=[-1.0], density_w=998.2, density_n=1.205, viscosity_w=0.00089, viscosity_n=1.81e-05, psk_model='VGM', nMaterialTypes=1, nPressModel=0, diagonal_conductivity=True, qScalarConstant=1.0, capillaryDiffusionScaling=1.0, advectionScaling=1.0)[source]

Bases: proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_split_pp_saturation_base

Aqueous phase mass conservation equation (saturation equation) in an incompressible fractional flow formulation

evaluate(t, c)[source]
twophaseDarcy_incompressible_split_pp_sd_saturation_het_matType()[source]

Evaluate the saturation coefficients of the split fractional flow formulation of incompressible, two-phase Darcy flow for a heterogeneous medium, sparse diffusion rep het capillary pressure is primary variable

class proteus.SubsurfaceTransportCoefficients.IncompressibleFractionalFlowPressureMualemVanGenuchten(nd, Ksw_types, vgm_n_types, vgm_alpha_types, thetaR_types, thetaSR_types, dimensionless_gravity, density_w, density_n, viscosity_w, viscosity_n, nSatModel=1, diagonal_conductivity=True, vgm_small_eps=1e-16, vgm_ns_del=1e-08, swConstant=1.0, capillaryDiffusionScaling=1.0)[source]

Bases: proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_incompressible_split_pressure

Total flow equation coefficients for incompressible flow assuming Mualem-Van Genuchten psk’s

class proteus.SubsurfaceTransportCoefficients.IncompressibleFractionalFlowSaturationMualemVanGenuchten(nd, Ksw_types, vgm_n_types, vgm_alpha_types, thetaR_types, thetaSR_types, dimensionless_gravity, density_w, density_n, viscosity_w, viscosity_n, nPressModel=1, diagonal_conductivity=True, vgm_small_eps=1e-16, vgm_ns_del=1e-08, qScalarConstant=1.0, capillaryDiffusionScaling=1.0, advectionScaling=1.0)[source]

Bases: proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_incompressible_split_saturation

Saturation equation coefficients for incompressible flow assuming Mualem-Van Genuchten psk’s

class proteus.SubsurfaceTransportCoefficients.IncompressibleFractionalFlowSaturationMualemVanGenuchtenSplitAdvDiff(nd, Ksw_types, vgm_n_types, vgm_alpha_types, thetaR_types, thetaSR_types, dimensionless_gravity, density_w, density_n, viscosity_w, viscosity_n, nPressModel=1, diagonal_conductivity=True, vgm_small_eps=1e-16, vgm_ns_del=1e-08, qScalarConstant=1.0, capillaryDiffusionScaling=1.0, advectionScaling=1.0, satModelIndex_me=1, satModelIndex_other=2)[source]

Bases: proteus.SubsurfaceTransportCoefficients.IncompressibleFractionalFlowSaturationMualemVanGenuchten

Saturation equation coefficients for incompressible flow assuming Mualem-Van Genuchten psk’s and splitting of advection and capillary diffusion terms

attachModels(modelList)[source]
preStep(t, firstStep=False)[source]
class proteus.SubsurfaceTransportCoefficients.CompressibleFractionalFlowPressureMualemVanGenuchten(nd, Ksw_types, vgm_n_types, vgm_alpha_types, thetaR_types, thetaSR_types, dimensionless_gravity, density_w, density_n, viscosity_w, viscosity_n, density_w_parameters, density_n_parameters, nSatModel=1, compressibilityFlag=2, diagonal_conductivity=True, vgm_small_eps=1e-16, vgm_ns_del=1e-08, swConstant=1.0, capillaryDiffusionScaling=1.0)[source]

Bases: proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_compressible_split_pressure

Total flow equation coefficients for slight compressible flow assuming Mualem-Van Genuchten psk’s

class proteus.SubsurfaceTransportCoefficients.CompressibleFractionalFlowSaturationMualemVanGenuchten(nd, Ksw_types, vgm_n_types, vgm_alpha_types, thetaR_types, thetaSR_types, dimensionless_gravity, density_w, density_n, viscosity_w, viscosity_n, density_w_parameters, density_n_parameters, nPressModel=1, compressibilityFlag=2, diagonal_conductivity=True, vgm_small_eps=1e-16, vgm_ns_del=1e-08, qScalarConstant=1.0, capillaryDiffusionScaling=1.0, advectionScaling=1.0)[source]

Bases: proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_compressible_split_saturation

Saturation equation coefficients for slightly compressible flow assuming Mualem-Van Genuchten psk’s

class proteus.SubsurfaceTransportCoefficients.IncompressibleFractionalFlowPressureSimplePSKs(nd, Ksw_types, thetaR_types, thetaSR_types, dimensionless_gravity, density_w, density_n, viscosity_w, viscosity_n, nSatModel=1, diagonal_conductivity=True, swConstant=1.0, capillaryDiffusionScaling=1.0)[source]

Bases: proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_incompressible_split_pressure

Total flow equation coefficients for incompressible flow assuming ‘simp’ quadratic rel-perm, linear capillary pressure psk relations

class proteus.SubsurfaceTransportCoefficients.IncompressibleFractionalFlowSaturationSimplePSKs(nd, Ksw_types, thetaR_types, thetaSR_types, dimensionless_gravity, density_w, density_n, viscosity_w, viscosity_n, nPressModel=1, diagonal_conductivity=True, qScalarConstant=1.0, capillaryDiffusionScaling=1.0, advectionScaling=1.0)[source]

Bases: proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_incompressible_split_saturation

Saturation equation coefficients for incompressible flow assuming ‘simp’ quadratic rel-perm, linear capillary pressure psk relations

class proteus.SubsurfaceTransportCoefficients.PressurePressureIncompressibleFractionalFlowPressureMualemVanGenuchten(nd, Ksw_types, vgm_n_types, vgm_alpha_types, thetaR_types, thetaSR_types, dimensionless_gravity, density_w, density_n, viscosity_w, viscosity_n, nSatModel=1, diagonal_conductivity=True, vgm_small_eps=1e-16, vgm_ns_del=1e-08, swConstant=1.0, capillaryDiffusionScaling=1.0)[source]

Bases: proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_incompressible_split_pp_pressure

Total flow equation coefficients for incompressible flow assuming Mualem-Van Genuchten psk’s

class proteus.SubsurfaceTransportCoefficients.PressurePressureIncompressibleFractionalFlowSaturationMualemVanGenuchten(nd, Ksw_types, vgm_n_types, vgm_alpha_types, thetaR_types, thetaSR_types, dimensionless_gravity, density_w, density_n, viscosity_w, viscosity_n, nPressModel=1, diagonal_conductivity=True, vgm_small_eps=1e-16, vgm_ns_del=1e-08, qScalarConstant=1.0, capillaryDiffusionScaling=1.0, advectionScaling=1.0)[source]

Bases: proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_incompressible_split_pp_saturation

Saturation equation coefficients for incompressible flow assuming Mualem-Van Genuchten psk’s

class proteus.SubsurfaceTransportCoefficients.GroundwaterTransportCoefficients(nc=1, nd=2, omega_types=array([ 0.3]), alpha_L_types=array([ 1.]), alpha_T_types=array([ 0.1]), d=array([ 1.30000000e-09]), meModelId=0, flowModelId=None, velocityFunctions=None)[source]

Bases: proteus.TransportCoefficients.TC_base

initializeMesh(mesh)[source]
initializeElementQuadrature(t, cq)[source]
initializeElementBoundaryQuadrature(t, cebq, cebq_global)[source]
initializeGlobalExteriorElementBoundaryQuadrature(t, cebqe)[source]
attachModels(modelList)[source]
evaluateVelocity(t, c)[source]
evaluate(t, c)[source]
groundwaterTransportCoefficientsEvaluate_hetMat()[source]

Evaluate the coefficients of linear advective-diffusion transport in porous media

class proteus.SubsurfaceTransportCoefficients.MultiphaseGroundwaterTransportCoefficients(nc=1, nd=2, omega_types=array([ 0.3]), alpha_L_types=array([ 1.]), alpha_T_types=array([ 0.1]), d=array([ 1.30000000e-09]), meModelId=0, flowModelId=None, velocityFunctions=None)[source]

Bases: proteus.TransportCoefficients.TC_base

variablySaturatedGroundwaterTransportCoefficientsEvaluate_hetMat()[source]

Evaluate the coefficients of linear advective-diffusion transport in variably saturated porous media

initializeMesh(mesh)[source]
initializeElementQuadrature(t, cq)[source]
initializeElementBoundaryQuadrature(t, cebq, cebq_global)[source]
initializeGlobalExteriorElementBoundaryQuadrature(t, cebqe)[source]
attachModels(modelList)[source]
evaluateVelocity(t, c)[source]
evaluate(t, c)[source]
class proteus.SubsurfaceTransportCoefficients.VariablySaturatedGroundwaterEnergyTransportCoefficients(nc=1, nd=2, density_w=998.2, density_n=1.205, specificHeat_w=0.04882, specificHeat_n=0.01446, omega_types=array([ 0.3]), alpha_L_types=array([ 1.]), alpha_T_types=array([ 0.1]), d=array([ 1.30000000e-09]), density_s_types=array([ 2725.086]), specificHeat_s_types=array([ 0.004167]), lambda_sat_types=array([ 0.58]), lambda_dry_types=array([ 0.3]), lambda_ani_types=array([ 1., 1., 1.]), meModelId=0, flowModelId=None, velocityFunctions=None)[source]

Bases: proteus.SubsurfaceTransportCoefficients.MultiphaseGroundwaterTransportCoefficients

variablySaturatedGroundwaterEnergyTransportCoefficientsEvaluate_hetMat()[source]

Evaluate the coefficients of linear advective-diffusion transport in variably saturated porous media

evaluate(t, c)[source]