proteus.SubsurfaceTransportCoefficients module
TransportCoefficients for flow and transport in porous media
- class proteus.SubsurfaceTransportCoefficients.BlockHeterogeneousCoefficients(mesh)[source]
Bases:
object
Basic data structures and functionality for keeping track of a block heterogeneity
- class proteus.SubsurfaceTransportCoefficients.SinglePhaseDarcyCoefficients(K_types, source_types, S_s_types=None, nc=1, nd=2, timeVaryingCoefficients=False, materialValuesLocallyConstant=False)[source]
Bases:
proteus.TransportCoefficients.TC_base
\(S_s h_t -\deld ( K_i(x,t) \grad h_i ) + r(x,t) = 0 i=1,nc\)
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- initializeMesh(mesh)[source]
Give the TC object access to the mesh for any mesh-dependent information.
- initializeElementQuadrature(t, cq)[source]
Give the TC object access to the element quadrature storage
- initializeElementBoundaryQuadrature(t, cebq, cebq_global)[source]
Give the TC object access to the element boundary quadrature storage
- class proteus.SubsurfaceTransportCoefficients.ConservativeHeadRichardsMualemVanGenuchten(nd, Ksw_types, vgm_n_types, vgm_alpha_types, thetaR_types, thetaSR_types, gravity, density, beta, diagonal_conductivity=True, getSeepageFace=None, pc_eps=1e-08)[source]
Bases:
proteus.TransportCoefficients.TC_base
version of Re where element material type id’s used in evals
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- initializeMesh(mesh)[source]
Give the TC object access to the mesh for any mesh-dependent information.
- initializeElementQuadrature(t, cq)[source]
Give the TC object access to the element quadrature storage
- initializeElementBoundaryQuadrature(t, cebq, cebq_global)[source]
Give the TC object access to the element boundary quadrature storage
- class proteus.SubsurfaceTransportCoefficients.RE_NCP1_OneLevelTransport(uDict, phiDict, testSpaceDict, matType, dofBoundaryConditionsDict, dofBoundaryConditionsSetterDict, coefficients, elementQuadrature, elementBoundaryQuadrature, fluxBoundaryConditionsDict=None, advectiveFluxBoundaryConditionsSetterDict=None, diffusiveFluxBoundaryConditionsSetterDictDict=None, stressFluxBoundaryConditionsSetterDict=None, stabilization=None, shockCapturing=None, conservativeFluxDict=None, numericalFluxType=None, TimeIntegrationClass=None, massLumping=False, reactionLumping=False, options=None, name='defaultName', reuse_trial_and_test_quadrature=False, sd=True, movingDomain=False)[source]
Bases:
proteus.Transport.OneLevelTransport
OneLevelTransport designed specifically for Non-Conforming \(P^1\) approximation to RE Approximation uses nodal quadrature and upwinding
Allocate storage and initialize some variables.
- Parameters
uDict (dict) – Dictionary of
proteus.FemTools.FiniteElementFunction
objects.phiDict (dict) – Dictionary of
proteus.FemTools.FiniteElementFunction
objects.testSpaceDict (dict) – Dictionary of FiniteElementSpace objects
dofBoundaryConditionsDict (dict) – Dictionary of DOFBoundaryConditions objects for the Dirichlet conditions.
coefficients (
proteus.TransportCoefficients.TC_base
) – Problem’s Transport Coefficients class.elementQuadratureDict (dict) – Dictionary of dictionaries of quadrature rules for each element integral in each component equation.
elementBoundaryQuadratureDict (dict) – Dictionary of dictionaries of quadrature rules for each element boundary integral in each component equation
stabilization (bool) –
shockCapturing (bool) –
numericalFlux (bool) –
bdyNullSpace (bool) – Indicates whether the boundary conditions create a global null space.
Notes
The constructor sets the input arguments, calculates dimensions, and allocates storage. The meanings of variable suffixes are
global – per physical domain
element – per element
elementBoundary – per element boundary
The prefix n means ‘number of’.
Storage is divided into quantities required at different sets of points or geometric entities. Each type of storage has a dictionary for all the quantities of that type. The names and dimensions of the storage dictionaries are
e – at element
q – at element quadrature, unique to elements
ebq – at element boundary quadrature, unique to elements
ebq_global – at element boundary quadrature, unique to element boundary
ebqe – at element boundary quadrature, unique to global, exterior element boundary
phi_ip – at the generalized interpolation points required to build a nonlinear phi
- class proteus.SubsurfaceTransportCoefficients.TwophaseDarcyFlow_base(nd=1, dimensionless_gravity=[- 1.0], density_w=998.2, density_n=1.205, viscosity_w=0.00089, viscosity_n=1.81e-05, density_w_parameters={'beta': 0.0, 'model': 'Exponential', 'nParameters': 3, 'psi_0': 0.0, 'rho_0': 998.2}, density_n_parameters={'beta': 0.0, 'model': 'Exponential', 'nParameters': 3, 'psi_0': 0.0, 'rho_0': 1.205}, psk_model='VGM', nMaterialTypes=1, diagonal_conductivity=True, nPSKsplineKnots=None)[source]
Bases:
proteus.TransportCoefficients.TC_base
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- twophaseDarcy_vol_frac()[source]
compute phase volume fractions
Use point-vals for sw and zoned material types for porosity (omega)
- default_density_w_parameters = {'beta': 0.0, 'model': 'Exponential', 'nParameters': 3, 'psi_0': 0.0, 'rho_0': 998.2}[source]
- default_density_n_parameters = {'beta': 0.0, 'model': 'Exponential', 'nParameters': 3, 'psi_0': 0.0, 'rho_0': 1.205}[source]
- initializeMesh(mesh)[source]
Give the TC object access to the mesh for any mesh-dependent information.
- initializeElementQuadrature(t, cq)[source]
Give the TC object access to the element quadrature storage
- initializeElementBoundaryQuadrature(t, cebq, cebq_global)[source]
Give the TC object access to the element boundary quadrature storage
- initializeGlobalExteriorElementBoundaryQuadrature(t, cebqe)[source]
Give the TC object access to the exterior element boundary quadrature storage
- class proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_fc(nd=1, dimensionless_gravity=[- 1.0], density_w=998.2, density_n=1.205, viscosity_w=0.00089, viscosity_n=1.81e-05, density_w_parameters={'beta': 0.0, 'model': 'Exponential', 'nParameters': 3, 'psi_0': 0.0, 'rho_0': 998.2}, density_n_parameters={'beta': 0.0, 'model': 'Exponential', 'nParameters': 3, 'psi_0': 0.0, 'rho_0': 1.205}, psk_model='VGM', nMaterialTypes=1, diagonal_conductivity=True, spatialCompressibilityFlag=0, nPSKsplineKnots=None)[source]
Bases:
proteus.SubsurfaceTransportCoefficients.TwophaseDarcyFlow_base
continuity equation for each phase
\[\pd{m_w}{t} - \deld ( en{a}_w \grad \phi_w) + r_w = 0 \pd{m_n}{t} - \deld ( en{a}_n \grad \phi_n) + r_n = 0\]Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- class proteus.SubsurfaceTransportCoefficients.FullyCoupledMualemVanGenuchten(nd, Ksw_types, vgm_n_types, vgm_alpha_types, thetaR_types, thetaSR_types, dimensionless_gravity, density_w, density_n, viscosity_w, viscosity_n, density_w_params, density_n_params, diagonal_conductivity=True, vgm_small_eps=1e-16, vgm_ns_del=1e-08, use_spline=False, nPSKsplineKnots=None)[source]
Bases:
proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_fc
Formulation using phase continuity equations and Van-Genuchten Mualem psk relations
Basically a convenience wrapper for fully coupled approximation with volume-fraction based inputs as in Richards’ equation formulations
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- class proteus.SubsurfaceTransportCoefficients.FullyCoupledSimplePSKs(nd, Ksw_types, thetaR_types, thetaSR_types, dimensionless_gravity, density_w, density_n, viscosity_w, viscosity_n, density_w_params, density_n_params, diagonal_conductivity=True)[source]
Bases:
proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_fc
Formulation using phase continuity equations and ‘simp’ quadratic rel-perm, linear capillary pressure psk relations
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- class proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_fc_pp(nd=1, dimensionless_gravity=[- 1.0], density_w=998.2, density_n=1.205, viscosity_w=0.00089, viscosity_n=1.81e-05, density_w_parameters={'beta': 0.0, 'model': 'Exponential', 'nParameters': 3, 'psi_0': 0.0, 'rho_0': 998.2}, density_n_parameters={'beta': 0.0, 'model': 'Exponential', 'nParameters': 3, 'psi_0': 0.0, 'rho_0': 1.205}, psk_model='VGM', nMaterialTypes=1, diagonal_conductivity=True, nPSKsplineKnots=None)[source]
Bases:
proteus.SubsurfaceTransportCoefficients.TwophaseDarcyFlow_base
continuity equation for each phase
\[\pd{m_w}{t} - \deld ( en{a}_w \grad \phi_w) + r_w = 0 \pd{m_n}{t} - \deld ( en{a}_n \grad \phi_n) + r_n = 0\]Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- twophaseDarcy_fc_pp_sd_het_matType()[source]
Evaluate the coefficients of the fully coupled formulation of (slightly) compressible, two-phase Darcy flow for a heterogeneous medium, pressure-pressure sparse diffusion rep. for het
- initializeElementQuadrature(t, cq)[source]
Give the TC object access to the element quadrature storage
- initializeElementBoundaryQuadrature(t, cebq, cebq_global)[source]
Give the TC object access to the element boundary quadrature storage
- initializeGlobalExteriorElementBoundaryQuadrature(t, cebqe)[source]
Give the TC object access to the exterior element boundary quadrature storage
- class proteus.SubsurfaceTransportCoefficients.FullyCoupledPressurePressureMualemVanGenuchten(nd, Ksw_types, vgm_n_types, vgm_alpha_types, thetaR_types, thetaSR_types, dimensionless_gravity, density_w, density_n, viscosity_w, viscosity_n, density_w_params, density_n_params, diagonal_conductivity=True, vgm_small_eps=1e-16, vgm_ns_del=1e-08, use_spline=False, nPSKsplineKnots=None)[source]
Bases:
proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_fc_pp
Formulation using phase continuity equations, pressure-pressure formulation and Van-Genuchten Mualem psk relations
Basically a convenience wrapper for fully coupled approximation with volume-fraction based inputs as in Richards’ equation formulations
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- class proteus.SubsurfaceTransportCoefficients.FullyCoupledPressurePressureSimplePSKs(nd, Ksw_types, thetaR_types, thetaSR_types, dimensionless_gravity, density_w, density_n, viscosity_w, viscosity_n, density_w_params, density_n_params, diagonal_conductivity=True)[source]
Bases:
proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_fc_pp
Formulation using phase continuity equations and ‘simp’ quadratic rel-perm, linear capillary pressure psk relations pressure-pressure formulation
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- class proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_split_pressure_base(nd=1, dimensionless_gravity=[- 1.0], density_w=998.2, density_n=1.205, viscosity_w=0.00089, viscosity_n=1.81e-05, density_w_parameters={'beta': 0.0, 'model': 'Exponential', 'nParameters': 3, 'psi_0': 0.0, 'rho_0': 998.2}, density_n_parameters={'beta': 0.0, 'model': 'Exponential', 'nParameters': 3, 'psi_0': 0.0, 'rho_0': 1.205}, psk_model='VGM', nMaterialTypes=1, nSatModel=1, diagonal_conductivity=True, swConstant=1.0, capillaryDiffusionScaling=1.0)[source]
Bases:
proteus.SubsurfaceTransportCoefficients.TwophaseDarcyFlow_base
Base class for ‘pressure’ or total flow conservation equation in fractional flow formulations. This
The primary functionality of the base class is to handle synchronization with a ‘saturation’ model to get the saturation, S_w, and capillary pressure (head), psi_c, variables
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- attachModels(modelList)[source]
Give the TC object access to other models in a loosely coupled split operator formulation (e.g. a transport equation for concentration might get velocity from a flow equation)
- initializeElementQuadrature(t, cq)[source]
Give the TC object access to the element quadrature storage
- initializeElementBoundaryQuadrature(t, cebq, cebq_global)[source]
Give the TC object access to the element boundary quadrature storage
- class proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_split_saturation_base(nd=1, dimensionless_gravity=[- 1.0], density_w=998.2, density_n=1.205, viscosity_w=0.00089, viscosity_n=1.81e-05, density_w_parameters={'beta': 0.0, 'model': 'Exponential', 'nParameters': 3, 'psi_0': 0.0, 'rho_0': 998.2}, density_n_parameters={'beta': 0.0, 'model': 'Exponential', 'nParameters': 3, 'psi_0': 0.0, 'rho_0': 1.205}, psk_model='VGM', nMaterialTypes=1, nPressModel=0, diagonal_conductivity=True, qScalarConstant=1.0, capillaryDiffusionScaling=1.0, advectionScaling=1.0)[source]
Bases:
proteus.SubsurfaceTransportCoefficients.TwophaseDarcyFlow_base
Base class for aqueous phase mass conservation equation (saturation equation) in a fractional flow formulation.
The primary responsibility of the base class is to handle synchronization with the ‘pressure’ equation to get the total flow velocity variable, q_t, and aqueous phase pressure head, psi_w
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- attachModels(modelList)[source]
Give the TC object access to other models in a loosely coupled split operator formulation (e.g. a transport equation for concentration might get velocity from a flow equation)
- initializeElementQuadrature(t, cq)[source]
Give the TC object access to the element quadrature storage
- initializeElementBoundaryQuadrature(t, cebq, cebq_global)[source]
Give the TC object access to the element boundary quadrature storage
- class proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_incompressible_split_pressure(nd=1, dimensionless_gravity=[- 1.0], density_w=998.2, density_n=1.205, viscosity_w=0.00089, viscosity_n=1.81e-05, psk_model='VGM', nMaterialTypes=1, nSatModel=1, diagonal_conductivity=True, swConstant=1.0, capillaryDiffusionScaling=1.0)[source]
Bases:
proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_split_pressure_base
Total flow conservation equation in an incompressible fractional flow formulation
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- class proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_incompressible_split_saturation(nd=1, dimensionless_gravity=[- 1.0], density_w=998.2, density_n=1.205, viscosity_w=0.00089, viscosity_n=1.81e-05, psk_model='VGM', nMaterialTypes=1, nPressModel=0, diagonal_conductivity=True, qScalarConstant=1.0, capillaryDiffusionScaling=1.0, advectionScaling=1.0)[source]
Bases:
proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_split_saturation_base
Aqueous phase mass conservation equation (saturation equation) in an incompressible fractional flow formulation
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- class proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_compressible_split_pressure(nd=1, dimensionless_gravity=[- 1.0], density_w=998.2, density_n=1.205, viscosity_w=0.00089, viscosity_n=1.81e-05, density_w_parameters={'beta': 0.0, 'model': 'Exponential', 'nParameters': 3, 'psi_0': 0.0, 'rho_0': 998.2}, density_n_parameters={'beta': 0.0, 'model': 'Exponential', 'nParameters': 3, 'psi_0': 0.0, 'rho_0': 1.205}, psk_model='VGM', nMaterialTypes=1, nSatModel=1, compressibilityFlag=2, diagonal_conductivity=True, swConstant=1.0, capillaryDiffusionScaling=1.0)[source]
Bases:
proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_split_pressure_base
Total flow conservation equation in a split compressible fractional flow formulation Right now, the options are
compressibility for the non-wetting phase (compressibleN) : compressiblityFlag=1
compressibility for both phases but with the slight compressiblity assumption (spatial density gradients are negligible) compressiblityFlag=2
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- twophaseDarcy_slightCompressible_split_sd_pressure_het_matType()[source]
Evaluate the pressure coefficients
Use the split fractional flow formulation of slight compressible, two-phase Darcy flow for a heterogeneous medium, sparse diffusion rep het
- class proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_compressible_split_saturation(nd=1, dimensionless_gravity=[- 1.0], density_w=998.2, density_n=1.205, viscosity_w=0.00089, viscosity_n=1.81e-05, density_w_parameters={'beta': 0.0, 'model': 'Exponential', 'nParameters': 3, 'psi_0': 0.0, 'rho_0': 998.2}, density_n_parameters={'beta': 0.0, 'model': 'Exponential', 'nParameters': 3, 'psi_0': 0.0, 'rho_0': 1.205}, psk_model='VGM', nMaterialTypes=1, nPressModel=0, compressibilityFlag=2, diagonal_conductivity=True, qScalarConstant=1.0, capillaryDiffusionScaling=1.0, advectionScaling=1.0)[source]
Bases:
proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_split_saturation_base
Aqueous phase mass conservation equation (saturation equation) in a compressible fractional flow formulation
Right now, the options are
compressibility for the non-wetting phase (compressibleN) : compressiblityFlag=1
compressibility for both phases but with the slight compressiblity assumption (spatial density gradients are negligible) compressiblityFlag=2
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- twophaseDarcy_slightCompressible_split_sd_saturation_het_matType()[source]
Evaluate the saturation coefficients
Use the split fractional flow formulation of slight compressible, two-phase Darcy flow for a heterogeneous medium, sparse diffusion rep het
- class proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_split_pp_pressure_base(nd=1, dimensionless_gravity=[- 1.0], density_w=998.2, density_n=1.205, viscosity_w=0.00089, viscosity_n=1.81e-05, density_w_parameters={'beta': 0.0, 'model': 'Exponential', 'nParameters': 3, 'psi_0': 0.0, 'rho_0': 998.2}, density_n_parameters={'beta': 0.0, 'model': 'Exponential', 'nParameters': 3, 'psi_0': 0.0, 'rho_0': 1.205}, psk_model='VGM', nMaterialTypes=1, nSatModel=1, diagonal_conductivity=True, swConstant=1.0, capillaryDiffusionScaling=1.0)[source]
Bases:
proteus.SubsurfaceTransportCoefficients.TwophaseDarcyFlow_base
Base class for ‘pressure’ or total flow conservation equation in fractional flow formulations. This
The primary functionality of the base class is to handle synchronization with a ‘saturation’ model to get the saturation, \(S_w\), and capillary pressure (head), \(\psi_c\), variables
This version would allow for capillary pressure to be unknown for saturation equation
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- attachModels(modelList)[source]
Give the TC object access to other models in a loosely coupled split operator formulation (e.g. a transport equation for concentration might get velocity from a flow equation)
- initializeElementQuadrature(t, cq)[source]
Give the TC object access to the element quadrature storage
- initializeElementBoundaryQuadrature(t, cebq, cebq_global)[source]
Give the TC object access to the element boundary quadrature storage
- class proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_split_pp_saturation_base(nd=1, dimensionless_gravity=[- 1.0], density_w=998.2, density_n=1.205, viscosity_w=0.00089, viscosity_n=1.81e-05, density_w_parameters={'beta': 0.0, 'model': 'Exponential', 'nParameters': 3, 'psi_0': 0.0, 'rho_0': 998.2}, density_n_parameters={'beta': 0.0, 'model': 'Exponential', 'nParameters': 3, 'psi_0': 0.0, 'rho_0': 1.205}, psk_model='VGM', nMaterialTypes=1, nPressModel=0, diagonal_conductivity=True, qScalarConstant=1.0, capillaryDiffusionScaling=1.0, advectionScaling=1.0)[source]
Bases:
proteus.SubsurfaceTransportCoefficients.TwophaseDarcyFlow_base
Base class for aqueous phase mass conservation equation (saturation equation) in a fractional flow formulation.
The primary responsibility of the base class is to handle synchronization with the ‘pressure’ equation to get the total flow velocity variable, \(q_t\), and aqueous phase pressure head, \(psi_w\)
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- attachModels(modelList)[source]
Give the TC object access to other models in a loosely coupled split operator formulation (e.g. a transport equation for concentration might get velocity from a flow equation)
- initializeElementQuadrature(t, cq)[source]
Give the TC object access to the element quadrature storage
- initializeElementBoundaryQuadrature(t, cebq, cebq_global)[source]
Give the TC object access to the element boundary quadrature storage
- class proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_incompressible_split_pp_pressure(nd=1, dimensionless_gravity=[- 1.0], density_w=998.2, density_n=1.205, viscosity_w=0.00089, viscosity_n=1.81e-05, psk_model='VGM', nMaterialTypes=1, nSatModel=1, diagonal_conductivity=True, swConstant=1.0, capillaryDiffusionScaling=1.0)[source]
Bases:
proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_split_pp_pressure_base
Total flow conservation equation in an incompressible fractional flow formulation
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- class proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_incompressible_split_pp_saturation(nd=1, dimensionless_gravity=[- 1.0], density_w=998.2, density_n=1.205, viscosity_w=0.00089, viscosity_n=1.81e-05, psk_model='VGM', nMaterialTypes=1, nPressModel=0, diagonal_conductivity=True, qScalarConstant=1.0, capillaryDiffusionScaling=1.0, advectionScaling=1.0)[source]
Bases:
proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_split_pp_saturation_base
Aqueous phase mass conservation equation (saturation equation) in an incompressible fractional flow formulation
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- class proteus.SubsurfaceTransportCoefficients.IncompressibleFractionalFlowPressureMualemVanGenuchten(nd, Ksw_types, vgm_n_types, vgm_alpha_types, thetaR_types, thetaSR_types, dimensionless_gravity, density_w, density_n, viscosity_w, viscosity_n, nSatModel=1, diagonal_conductivity=True, vgm_small_eps=1e-16, vgm_ns_del=1e-08, swConstant=1.0, capillaryDiffusionScaling=1.0)[source]
Bases:
proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_incompressible_split_pressure
Total flow equation coefficients for incompressible flow assuming Mualem-Van Genuchten psk’s
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- class proteus.SubsurfaceTransportCoefficients.IncompressibleFractionalFlowSaturationMualemVanGenuchten(nd, Ksw_types, vgm_n_types, vgm_alpha_types, thetaR_types, thetaSR_types, dimensionless_gravity, density_w, density_n, viscosity_w, viscosity_n, nPressModel=1, diagonal_conductivity=True, vgm_small_eps=1e-16, vgm_ns_del=1e-08, qScalarConstant=1.0, capillaryDiffusionScaling=1.0, advectionScaling=1.0)[source]
Bases:
proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_incompressible_split_saturation
Saturation equation coefficients for incompressible flow assuming Mualem-Van Genuchten psk’s
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- class proteus.SubsurfaceTransportCoefficients.IncompressibleFractionalFlowSaturationMualemVanGenuchtenSplitAdvDiff(nd, Ksw_types, vgm_n_types, vgm_alpha_types, thetaR_types, thetaSR_types, dimensionless_gravity, density_w, density_n, viscosity_w, viscosity_n, nPressModel=1, diagonal_conductivity=True, vgm_small_eps=1e-16, vgm_ns_del=1e-08, qScalarConstant=1.0, capillaryDiffusionScaling=1.0, advectionScaling=1.0, satModelIndex_me=1, satModelIndex_other=2)[source]
Bases:
proteus.SubsurfaceTransportCoefficients.IncompressibleFractionalFlowSaturationMualemVanGenuchten
Saturation equation coefficients for incompressible flow assuming Mualem-Van Genuchten psk’s and splitting of advection and capillary diffusion terms
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- class proteus.SubsurfaceTransportCoefficients.CompressibleFractionalFlowPressureMualemVanGenuchten(nd, Ksw_types, vgm_n_types, vgm_alpha_types, thetaR_types, thetaSR_types, dimensionless_gravity, density_w, density_n, viscosity_w, viscosity_n, density_w_parameters, density_n_parameters, nSatModel=1, compressibilityFlag=2, diagonal_conductivity=True, vgm_small_eps=1e-16, vgm_ns_del=1e-08, swConstant=1.0, capillaryDiffusionScaling=1.0)[source]
Bases:
proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_compressible_split_pressure
Total flow equation coefficients for slight compressible flow assuming Mualem-Van Genuchten psk’s
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- class proteus.SubsurfaceTransportCoefficients.CompressibleFractionalFlowSaturationMualemVanGenuchten(nd, Ksw_types, vgm_n_types, vgm_alpha_types, thetaR_types, thetaSR_types, dimensionless_gravity, density_w, density_n, viscosity_w, viscosity_n, density_w_parameters, density_n_parameters, nPressModel=1, compressibilityFlag=2, diagonal_conductivity=True, vgm_small_eps=1e-16, vgm_ns_del=1e-08, qScalarConstant=1.0, capillaryDiffusionScaling=1.0, advectionScaling=1.0)[source]
Bases:
proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_compressible_split_saturation
Saturation equation coefficients for slightly compressible flow assuming Mualem-Van Genuchten psk’s
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- class proteus.SubsurfaceTransportCoefficients.IncompressibleFractionalFlowPressureSimplePSKs(nd, Ksw_types, thetaR_types, thetaSR_types, dimensionless_gravity, density_w, density_n, viscosity_w, viscosity_n, nSatModel=1, diagonal_conductivity=True, swConstant=1.0, capillaryDiffusionScaling=1.0)[source]
Bases:
proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_incompressible_split_pressure
Total flow equation coefficients for incompressible flow assuming ‘simp’ quadratic rel-perm, linear capillary pressure psk relations
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- class proteus.SubsurfaceTransportCoefficients.IncompressibleFractionalFlowSaturationSimplePSKs(nd, Ksw_types, thetaR_types, thetaSR_types, dimensionless_gravity, density_w, density_n, viscosity_w, viscosity_n, nPressModel=1, diagonal_conductivity=True, qScalarConstant=1.0, capillaryDiffusionScaling=1.0, advectionScaling=1.0)[source]
Bases:
proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_incompressible_split_saturation
Saturation equation coefficients for incompressible flow assuming ‘simp’ quadratic rel-perm, linear capillary pressure psk relations
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- class proteus.SubsurfaceTransportCoefficients.PressurePressureIncompressibleFractionalFlowPressureMualemVanGenuchten(nd, Ksw_types, vgm_n_types, vgm_alpha_types, thetaR_types, thetaSR_types, dimensionless_gravity, density_w, density_n, viscosity_w, viscosity_n, nSatModel=1, diagonal_conductivity=True, vgm_small_eps=1e-16, vgm_ns_del=1e-08, swConstant=1.0, capillaryDiffusionScaling=1.0)[source]
Bases:
proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_incompressible_split_pp_pressure
Total flow equation coefficients for incompressible flow assuming Mualem-Van Genuchten psk’s
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- class proteus.SubsurfaceTransportCoefficients.PressurePressureIncompressibleFractionalFlowSaturationMualemVanGenuchten(nd, Ksw_types, vgm_n_types, vgm_alpha_types, thetaR_types, thetaSR_types, dimensionless_gravity, density_w, density_n, viscosity_w, viscosity_n, nPressModel=1, diagonal_conductivity=True, vgm_small_eps=1e-16, vgm_ns_del=1e-08, qScalarConstant=1.0, capillaryDiffusionScaling=1.0, advectionScaling=1.0)[source]
Bases:
proteus.SubsurfaceTransportCoefficients.TwophaseDarcy_incompressible_split_pp_saturation
Saturation equation coefficients for incompressible flow assuming Mualem-Van Genuchten psk’s
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- class proteus.SubsurfaceTransportCoefficients.GroundwaterTransportCoefficients(nc=1, nd=2, omega_types=array([0.3]), alpha_L_types=array([1.]), alpha_T_types=array([0.1]), d=array([1.3e-09]), meModelId=0, flowModelId=None, velocityFunctions=None)[source]
Bases:
proteus.TransportCoefficients.TC_base
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- initializeMesh(mesh)[source]
Give the TC object access to the mesh for any mesh-dependent information.
- initializeElementQuadrature(t, cq)[source]
Give the TC object access to the element quadrature storage
- initializeElementBoundaryQuadrature(t, cebq, cebq_global)[source]
Give the TC object access to the element boundary quadrature storage
- initializeGlobalExteriorElementBoundaryQuadrature(t, cebqe)[source]
Give the TC object access to the exterior element boundary quadrature storage
- class proteus.SubsurfaceTransportCoefficients.MultiphaseGroundwaterTransportCoefficients(nc=1, nd=2, omega_types=array([0.3]), alpha_L_types=array([1.]), alpha_T_types=array([0.1]), d=array([1.3e-09]), meModelId=0, flowModelId=None, velocityFunctions=None)[source]
Bases:
proteus.TransportCoefficients.TC_base
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.
- initializeMesh(mesh)[source]
Give the TC object access to the mesh for any mesh-dependent information.
- initializeElementQuadrature(t, cq)[source]
Give the TC object access to the element quadrature storage
- initializeElementBoundaryQuadrature(t, cebq, cebq_global)[source]
Give the TC object access to the element boundary quadrature storage
- initializeGlobalExteriorElementBoundaryQuadrature(t, cebqe)[source]
Give the TC object access to the exterior element boundary quadrature storage
- class proteus.SubsurfaceTransportCoefficients.VariablySaturatedGroundwaterEnergyTransportCoefficients(nc=1, nd=2, density_w=998.2, density_n=1.205, specificHeat_w=0.04882, specificHeat_n=0.01446, omega_types=array([0.3]), alpha_L_types=array([1.]), alpha_T_types=array([0.1]), d=array([1.3e-09]), density_s_types=array([2725.086]), specificHeat_s_types=array([0.004167]), lambda_sat_types=array([0.58]), lambda_dry_types=array([0.3]), lambda_ani_types=array([1., 1., 1.]), meModelId=0, flowModelId=None, velocityFunctions=None)[source]
Bases:
proteus.SubsurfaceTransportCoefficients.MultiphaseGroundwaterTransportCoefficients
Set the number of components (equations) of the PDE and initialize the dicitionaries describing the form of the coefficients. Strings naming each component (used for viewing and archiving) and a structure defining the sparsity pattern of diffusion tensors may also be provided.