proteus.mprans.Pres module

class proteus.mprans.Pres.NumericalFlux(vt, getPointwiseBoundaryConditions, getAdvectiveFluxBoundaryConditions, getDiffusiveFluxBoundaryConditions)[source]

Bases: proteus.NumericalFlux.ConstantAdvection_exterior

class proteus.mprans.Pres.Coefficients(modelIndex=None, fluidModelIndex=None, pressureIncrementModelIndex=None, useRotationalForm=False)[source]

Bases: proteus.TransportCoefficients.TC_base

The coefficients for pressure solution

Update is given by

\[p^{k+1} - p^{k} - phi^{k+1} +\]

ablacdot(mu mathbf{u}^{k+1}) = 0

Construct a coefficients object

Parameters:pressureIncrementModelIndex – The index into the model list
attachModels(modelList)[source]
initializeMesh(mesh)[source]

Give the TC object access to the mesh for any mesh-dependent information.

initializeElementQuadrature(t, cq)[source]

Give the TC object access to the element quadrature storage

initializeElementBoundaryQuadrature(t, cebq, cebq_global)[source]

Give the TC object access to the element boundary quadrature storage

initializeGlobalExteriorElementBoundaryQuadrature(t, cebqe)[source]

Give the TC object access to the exterior element boundary quadrature storage

initializeGeneralizedInterpolationPointQuadrature(t, cip)[source]

Give the TC object access to the generalized interpolation point storage. These points are used to project nonlinear potentials (phi).

preStep(t, firstStep=False)[source]

Give the TC object an opportunity to modify itself before the time step.

postStep(t, firstStep=False)[source]

Give the TC object an opportunity to modify itself before the time step.

evaluate(t, c)[source]
evaluatePressure(t, c)[source]

Evaluate the coefficients after getting the specified velocity and density

class proteus.mprans.Pres.LevelModel(uDict, phiDict, testSpaceDict, matType, dofBoundaryConditionsDict, dofBoundaryConditionsSetterDict, coefficients, elementQuadrature, elementBoundaryQuadrature, fluxBoundaryConditionsDict=None, advectiveFluxBoundaryConditionsSetterDict=None, diffusiveFluxBoundaryConditionsSetterDictDict=None, stressTraceBoundaryConditionsSetterDict=None, stabilization=None, shockCapturing=None, conservativeFluxDict=None, numericalFluxType=None, TimeIntegrationClass=None, massLumping=False, reactionLumping=False, options=None, name='defaultName', reuse_trial_and_test_quadrature=True, sd=True, movingDomain=False, bdyNullSpace=False)[source]

Bases: proteus.Transport.OneLevelTransport

nCalls = 0[source]
calculateCoefficients()[source]
calculateElementResidual()[source]
getResidual(u, r)[source]
getJacobian(jacobian)[source]
calculateElementQuadrature()[source]

Calculate the physical location and weights of the quadrature rules and the shape information at the quadrature points.

This function should be called only when the mesh changes.

calculateElementBoundaryQuadrature()[source]
calculateExteriorElementBoundaryQuadrature()[source]
estimate_mt()[source]
calculateAuxiliaryQuantitiesAfterStep()[source]
calculateSolutionAtQuadrature()[source]
updateAfterMeshMotion()[source]